Inhibition of Reductive Elimination of Diorganopalladium Species by Formation of Tetraorganopalladates

Ei-ichi Negishi,* Kazunari Akiyoshi, and Tamotsu Takahashi

Department of Chemistry, Purdue University, W. La fa yette, Indiana 47907, U.S.A.

Reductive elimination of ('BuC $\equiv C$)₂Pd(PPh₃)₂ to give 'BuC \equiv CC \equiv CBu^t (4) is strongly inhibited by an excess of LiC \equiv CBut through the formation of Li₂Pd(C \equiv CBut)₄, which does not readily decompose to produce (4); these results provide, for the first time, a mechanistic interpretation of the hitherto puzzling inhibitory action of highly electropositive metals, such as Li, in Pd-promoted coupling reactions.

Carbon-carbon bond formation *via* reductive elimination of diorganopalladium species (1) has proved to be a selective and versatile synthetic methodology.1 The required intermediate (1) is usually generated *in situ* by transmetallation, and the method has been shown to be highly general with respect to M in equation (1). At the same time, however, it also displays a marked countercation (M) dependence.2 For example a striking contrast between Li, a highly electropositive metal, and Zn, a metal of intermediate electronegativity, is clearly seen in the results for the formation of $PhC\equiv CBu^t$, equation **(2).**

$$
\begin{array}{c} \text{PhPd}(\text{PPh}_3)_2\text{I}\\ \text{(3)} \end{array}
$$

In this communication we report that reductive elimination of diorganopalladium species (1) is strongly inhibited by an excess of organolithium reagent, e.g., LiC=CBu^t, through the formation of tetraorganopalladates, e.g., Li₂Pd(C=CBu^t)₄. Although some similar palladate complexes have been reported, 3 their inhibitory role in the Pd-promoted coupling reaction has not been reported.

The first clue to understanding the adverse and puzzling effect of organolithium reagents was found in two stoicheiometric reactions of preformed PhPd(PPh3)21, **(3),** with $LiC\equiv CBu^t$ and $ClZnC\equiv CBu^t$. In sharp contrast with the catalytic reactions shown in equation **(2),** both of these reactions gave (2) in $>95\%$ yields within 1 h. Since these results indicated that the intrinsic reactivity of LiGCBut towards (3) might not be lower than that of ClZnC=CBut, an inhibitory effect of LiC=CBu^t was suspected.

A dramatic and clearcut inhibitory effect was observed in the reaction of $Cl_2Pd(PPh_3)_2$ with LiC=CBu^t, equation (3). Thus, the 1:2 reaction of these two reagents in tetrahydro-**(2) (3) (4) (4) (4) in** $>95\%$ **yield** THF, **22** °C, 3 h **(2)**

with no indication of dissociation of PPh₃ from Pd. The $31P$ n.m.r. spectrum of the reaction mixture showed only one relatively broad signal at **23.1** p.p.m. attributable to $Pd(PPh₃)₂(LiCl)_n$, (5), where $n = 1$ or 2.4 Addition of 1 equiv. of PhI converted *(5)* into (3) in **>90%** yield within **30** min. On the other hand, the use of 8 equiv. of LiC=CBut gave only a trace of **(4).** 31P N.m.r. examination indicated quantitative liberation of PPh_3 (-4.48 p.p.m.). Although the ¹H n.m.r. spectrum of the reaction mixture showed only one But signal at **1.04** p.p.m., its 13C n.m.r. spectrum indicated that there were two discrete C=CBu^t groups in an essentially 1:1 ratio; The one that shows the ¹³C n.m.r. signals at δ 28.94, 33.19, **114.54, and 123.86 belongs to LiC=CBut. The other set of ¹³C** n.m.r. signals at 6 **29.81, 33.42, 95.92,** and **115.36** is

$$
R(X)Pd(PPh3)2 \xrightarrow{MR} R2Pd(PPh3)2 \xrightarrow{2 MR} R1
$$
\n
$$
R2Pd(PPh3)2 \xrightarrow{2 MR} R2
$$
\n
$$
(1)
$$
\n
$$
Lic \equiv CBu^{t} (1 \text{equiv}), \qquad Phc \equiv CBu^{t} + Phi
$$
\n
$$
FhC \equiv CBu^{t} + Phi
$$
\n
$$
THF, 22 \text{ °C}, 24 h
$$
\n
$$
C1ZnC \equiv CBu^{t} (1 \text{equiv}), \qquad Phc \equiv CBu^{t}
$$
\n
$$
S \text{ mol}^{t\prime}, \text{Pd}(PPh3)4, \qquad Phc \equiv CBu^{t}
$$
\n
$$
S \text{ mol}^{t\prime}, \text{Pd}(PPh3)4, \qquad (2)(90\text{′})
$$

attributable to $Li_2Pd(C\equiv CBu^t)_4$ (6). Treatment of the 1:8 reaction mixture with 8 equiv. of cyclohexanone induced a rapid disappearance of LiC=CBu^t (4 equiv.) with concomitant formation **of** 1-(3' **,3'-dimethylbutyny1)cylohexanol** followed by a much slower disappearance of *(6),* the rate ratio of the *two* processes being **>50** : **1.**

The 1:4 reaction of $Cl_2Pd(PPh_3)_2$ with LiC \equiv CBu^t led to competitive formation of **(4)** and *(6).* However, treatment of $Li₂PdCl₄$ with 4 equiv. of $Li₂CO$ Bu^t cleanly and quantitatively yielded (6) free of PPh₃ and LiC \equiv CBu^t [i.r. (THF) 2067 (m, $V_{C=C}$) cm⁻¹; ¹H n.m.r. (THF) δ 1.04 (s); ¹³C n.m.r. (THF) δ 29.45,33.36,99.89, and **115.511.** The 13C n.m.r. signals of this sample did not show any splitting upon addition of a mixture obtained by the reaction of $Cl_2Pd(PPh_3)_2$ with 8 equiv. of LiC=CBu^t. The rate of the reaction of (6) prepared from $Li₂PdCl₄$ with cyclohexanone is essentially the same as that of the slow section of the corresponding reaction of the 1:8 reaction product. It is important to note that, in the reaction of $Cl₂Pd(P\hat{P}h_3)$, with $ClZnC\equiv CBu^t$, both the 1:2 and 1:8 reactant ratios did not show any sign of inhibition and led to the formation **of (4)** in essentially quantitative yields within 1 h at 22 "C.

In summary, the inhibitory effect of $LiC\equiv CBu^t$ in the reductive elimination of ($\text{tBuC} \equiv \text{C}_2$)₂Pd(PPh₃)₂ is attributable to the excessively high reactivity of $LiCECBu^t$, which induces competitive or preferential formation of $Li₂Pd(C_{\equiv}CBu^t)₄$. **This** provides, for the first time, a clear mechanistic interpretation for the hitherto puzzling inhibitory effect of organolithium reagents in Pd-promoted coupling reactions.

We thank the N.S.F. and Engelhard Industries for support.

Received, 5th November 1986; Com. 1578

References

- **1 For a review, see E. Negishi,** *Acc. Chem. Res.,* **1982, 15,340.**
- **2 A. 0. King, N. Okukado, and E. Negishi,** *J. Chem.* **SOC.,** *Chem. Commun.,* **1977,683; A.** *0.* **King, E. Negishi, F. J. Villiani, Jr., and A. Silveira, Jr.,** *J. Org. Chem.,* **1978,43,358; E. Negishi in 'Aspects** of **Mechanism and Organometallic Chemistry,' ed. J. H. Brewster, Plenum, New York, 1978, p. 285; E. Negishi, F.** T. Luo, **R. Frisbee, and H. Matsushita,** *Heterocycles,* **1982, 18, 117; E. Negishi and F. T. Luo,** *J. Org. Chem.,* **1982,48,** 1560.
- **3 R. Nast and W. Horl,** *Chem. Ber.,* **1962, 95, 1470;** M. **C. Barral,** R. Jimenez, E. Royer, V. Moreno, and A. Santos, *Inorg. Chem. Acta,* **1978,31, 165.**
- **4 E. Negishi, T. Takahashi, and K. Akiyoshi,** *J. Chem.* **SOC.,** *Chem. Commun.,* **1986, 1338.**